

プロジェクトメンバー:エレクトロニクス先端融合研究所 <u>有吉誠一郎</u>、三上光瑠、田中三郎

<u>§1 研究の背景と目的</u>

光の周波数領域

マイクロ波	ミリ波	テラヘルツ沥	史	赤外線	可視光
周波数 波長	0.1 THz 3 mm		10 THz 30 μm		
電波としての物質透過性		性	光波としての直進性		

物質透過性、高空間分解能、被ばくが無い。

カ学インダクタンス検出器(MKID)

・高感度、高応答速度、大規模アレイ化が容易 ・天文学用途での研究が主流であり、汎用的ではない ・超伝導転移温度(Tc)の低い物質(Tc:~20 K)を用いた研究が大半

YBa₂Cu₃O₇₋₈ (YBCO)に着目し、液体窒素温度(77 K)で

Size O Sensitivity O bandwidth O Frequency (THz) K. Hayashi et al., *Physics Procedia*, **45**, p.213 (2013).

EIIRIS

<u>§2 MKIDの作製</u>

<u>§3 MKIDの電気特性評価</u>

<u>§4 MKIDの光学特性評価</u>

共振特性の改善による性能向上が必要

§5 まとめと今後の展望

