集積化MEMS技術による細菌のストレス応答解明と細菌同定技術への応用 Identification of *Legionella* Species by Photogate-Type Optical Sensor

^OSawako Tanaka¹, Yong Joon Choi¹, Toshihiko Noda¹, Makoto Ishida¹, Kazuaki Sawada¹, Hiromu Ishii¹, Katsuyuki Machida², Yasuhiko Nikaido³, Mitsumasa Saito³, and Shin-ichi Yoshida⁴

¹Engineering, Toyohashi University of Technology, Aichi, Japan, Engineering, ²Tokyo Institute of Technology, Tokyo, Japan, ³Medical, University of Occupational and Environmental Health, Fukuoka, Japan, Clinic, ⁴Fukuoka Megumi Hospital, Fukuoka, Japan <u>E-mail:tanaka-sa@int.ee.tut.ac.jp</u>

Summary

This work describes simple method for sensing bacteria, *Legionella* by using a photogate-type optical sensor and MEMS chip. We observed the behavior of fluorescence from *Legionella* dumoffii (L. dumoffii) and Legionella erythra (L. erythra) when they are exposed to ultraviolet light. The time dependence of the fluorescence intensity of *L. dumoffii* and *L. erythra* obtained with photogate-type optical sensor agreed well with that of fluorescence intensity obtained with spectrometer, showing that each *Legionella* is able to be detected by photogate-type optical sensor. Using the difference of their behavior, the identification of each bacterium was successfully performed for a mixed bacterial system of *L. dumoffii* and *L. erythra* by the combination of photogate-type optical sensor and optical filters.

Introduction A Sensor for avoiding an outbreak of bacterial infection

Experiment Results Identification of *Legionella* species

This work describes the following two investigations:

(1) Observation of respective fluorescence from *L. dumoffii* and *L. erythra* by the sensor when they are exposed to UV light.

(2) Discrimination of *L. erythra* from a mixed system of *L. dumoffii* and *L. erythra* by using the combination of PG-sensor and optical filters.

Measurement system

Biochip

Ubiquitous system

Development of a sensor that can detects bacteria without cultivation in a short time is desired.

What is Legionella ?

Size : length 1-10µm, diameter 0.3-0.9µm Infection : pneumonia Habitat : Facilities using circulating water circulating water Characteristic : Fluorescence emission by ultraviolet light irradiation Definitive diagnosis: Culture method

[1] Ed. by S.Yoshida, Y.Yanagi, Y.Yoshikai: [[]Toda's New Bacteriology] Nanzando, 2013

Method The combination of photogate-type optical sensor and MEMS Chip

Procedure

1. Put bacteria with beads in the chip 2. Set the chip on the sensor 3. UV irradiation

L. dumoffii : blue fluorescence

L. erythra : red fluorescence

- 4. Legionella emits fluorescence
- 5. Detect fluorescence by the sensor

Photogate-type optical sensor

• Schematic cross-section

• Potential diagram of the sensor ential $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

W: Depth

• Bird's eye view • Absorb UV excitation

• Photocurrent produced by Legionella fluorescence

 $I = \frac{qS\lambda}{r} (1 - e^{-\alpha W}) \phi_0(t)$

a : Absorption coefficient ϕ : Intensity of light s : Sensing area λ : Wavelength h : Planck's constant q: Elementary charge I: Photocurrent

It is necessary to know characteristic parameters: wavelength λ and intensity $\phi_0(t)$.

-sub contact

p-well contact

Sensing area

Output contact

Photogate contact

How to identify ?

• Use λ and rate constants

• Chemical kinetic analysis

With a long pass optical filter

Time (s)

Mixture of L. dumoffii & L. erythra

Rate constants

Spectrometer k₁...0.0012, k₂...0.0014 Sensor k_1 ...0.0013, k_2 ...0.0014

L. erythra cells in the bacterial mixed system were identified by using a combination of the sensor and an optical filter.